Chapter 1

Java and XML: Joining Forces
In Search of the Holy Grail

In This Chapter
Why Java and XML work well together
Java tools for XML processing: an overview

The big move toward Web services

A t my home, we celebrate every year on the tenth of May. That’s
because May 10, 1869 was the day of the “Golden Spike” — the driving
of the final stake into the Transcontinental Railroad. The completion of this
nineteenth century engineering miracle — connecting the two ends of the
continent by rail — was an event of enormous importance.

Of course, miracles don’t come easily. This miracle faced some serious
stumbling blocks along the way. As late as April 1869, the two railroad
companies (one working from the west coast, and the other from the east
coast) were competing for big government subsidies. The top dogs in each
company wanted to lay more track than the people from the other company.
So the two companies didn’t agree on a common meeting point for the tracks.

Both companies laid tracks along their preferred routes and, instead of meet-
ing, the routes actually passed one another. Imagine two stretches of railroad
tracks, covering an overall distance of three thousand miles, and then missing
one another near Promontory, Utah. The companies’ work crews were close
enough to fight with one another while they both laid track over the same
two-hundred-mile stretch.

At this point, you may be asking yourself what this railroad story has to do
with Java and XML. Well, many of my stories travel long journeys before they
turn around and go home. But this railroad story isn’t such a stretch. For me,
the story illustrates the most blatant lack of standards in history.

It wasn’t the absence of insight that kept these people from setting a standard.
Quite the contrary, the whole point of the endeavor was to join the tracks. It
wasn’t a lack of communication, or a shortage of funds. These people simply

10

Part I: Getting Started

refused to agree. And because they refused, their workers laid two hundred
miles of parallel track. What a waste!

Well, if this story has a point, it’s that standards are important. (Notice that

[said “if.”) Without standards, the modern world would be a no-tech zone.
We’d be lighting candles because Brand A’s bulbs didn’t fit Brand B’s sockets.
And, if we could muster the know-how to build two computers, then one com-
puter’s software wouldn’t communicate with the other computer’s software.

That’s good. I've finally reached a relevant point. Software standards are
important. That’s what a book on Java and XML is all about.

Why Software Doesn’t Work

Long ago, in a mythical village named Philadelphia, some people named
Mauchly and Eckert developed the first general-purpose, all-electronic
computer. The computer weighed over 30 tons, and consumed enough
electrical power to run 150 present-day homes. Some folks say that
inventing a computer was the easy part. The hard part (a job that
consumed peoples’ time and energy for the rest of the millennium)

was creating software that runs effectively on this modern marvel.

[don’t want to bore you with historical details. (Well, actually, I'd /ike to bore
you with ‘em, but my editor won’t let me!) Anyway, the problem with software
is threefold:

+~ There’s always more than one way to express a solution to a program-
ming problem.

Forget “skinning the cat” — how do you give someone instructions to
clean a cat box? You could say, “First scoop the litter, then add more
litter.” You would start with imperative statements.

But when you write a computer program, you don’t necessarily start
with imperative statements. In Java, for example, you start by construct-
ing the objects — as in, “Create instances of the CatBox and CatlLitter
classes” — before you tell it what to do with them. Such is the approach
used in object-oriented programming.

It’s taken decades for the world to understand the benefits of object-
oriented programming. We've seen FORTRAN, C, and many other
languages get pushed into the background as newer, more usable
languages come to the fore. The ultimate challenge — finding the best
way to issue instructions — is a never-ending battle. It’s one developer
against another, one company against another, one passionate believer
against another.

Chapter 1: Java and XML: Joining Forces in Search of the Holy Grail ’ ’

v~ Software is virtual, not physical.

That means you can build, rework, replace, and destroy it at lightning
speed. If we could build bridges as quickly as we build computer
programs, then we’d have billions of miles of shore-to-shore spans.
The average hobbyist would build a bridge in minutes — and most of
the world’s bridges would be completely unusable — a vast tangle of
kludges.

Easily built structures tend to be complex and unwieldy. When you work
hard to piece together a physical system (a real bridge, for instance),
you're constrained by nature to make the system as simple and (we
hope) reliable as possible. But when you piece together a large system
with no physical effort, the system can sprout complexities till you
don’t fully understand its parts. Interactions among the parts become
less predictable, the system becomes unreliable, and that’s why so
much software is so brittle.

v Without rigorous standards, software isn’t useful in more than one
context.

In the olden days, every computer had its own, private version of
FORTRAN or COBOL. This didn’t work well, because one person’s
program couldn’t run on another person’s computer.

Along came standard FORTRAN and standard COBOL, and the software
world rolled along nicely for a while. But then other languages came on
the scene and muddled it up again. Your machine ran only FORTRAN or
C, while my machine ran only Algol, PL/1, or COBOL. If you wanted to
share a FORTRAN program with me, then I'd have to spend time and
money configuring a FORTRAN compiler to run on my computer. Of
course, no one worried too much about this problem because the
notion of sharing code seemed like sharing profits with competitors —
not a very popular idea.

These days we have the Internet, and open-source software is all the
rage; everyone wants to run everyone else’s code. The more you share,
the more your paid services become desirable. But with half a million
programmers in the United States alone, each one writing code in his
or her own way, how do you coordinate all that programming activity?

At the start of the third millennium, we’ve found partial solutions to each of
these problems. Here’s what we know so far:

»* On expressing a programming solution:

Some programming languages are better than others. Some ways of
representing data are better than others. For many applications, object-
oriented programming is better than straight procedural programming.
Everyone has his or her favorite language, and everyone has his or her
favorite programming style. While no one is rational and unbiased,
everyone is ready to fight for his or her choice.

’ 2 Part I: Getting Started

+ On software’s being virtual, complex, and generally unreliable:

The people who study software engineering have some clever tactics for
tackling this problem. According to these folks, the answer lies in a stan-
dardized discipline for analyzing, designing, coding, and maintaining a

software project, with attention to every detail in the software life cycle.

The promise of software engineering has had mixed success. Some
people swear by it, some cast asparagus on it, and others ignore it. One
way or another, software engineering is a worthwhile and noble effort.

+ On standards and portability:

As offensive as it may be to the freethinkers of this world, experience
has shown that industry-wide standards make life easier.

If everyone uses a standard programming language, then your code has
a fighting chance of running on my computer, and vice versa; code has
become portable from platform to platform. Maybe you want to sell your
code to me, or maybe you realize that, when I run your code, I can build
on top of it, make enhancements to it, and eventually make your code
more salable.

If everyone uses a standard format for representing data, then my
programs can read your data, and your programs can read mine — the
data has become portable. Sure, this situation isn’t always desirable, but
with sharable data, the potential benefit is mind-boggling. Share product
information with visitors to your Web site. Share the terms of a financial
agreement with partners and clients. Share tidbits with friends using
Comics Markup Language.* The possibilities are endless.

Portable Code and Portable Data

Java is portable, XML is portable — so what’s the big deal? Well, in the realm
of portability, the chain is as strong as its weakest link. Take, for instance, the
following scenario:

Your company forms a partnership with Joe’s Hardware — a company with
roughly five thousand employees. The two companies’ products complement
one another, so an increase in either company’s sales will benefit the other
company. For as long as you've been in business (two whole years, including
the dot-com downturn), you've been storing your data in your company’s
homegrown format. Now it’s time to share data with your partner Joe.

Fortunately, your homegrown data format is based on XML. Getting Joe’s
computers to read your data is easy. You just juggle some XML elements.

*For information on ComicsML, visit www.xm1.com/pub/a/2001/04/18/comicsml.html.

Chapter 1: Java and XML: Joining Forces in Search of the Holy Grail ’3

Anyway, you and Joe agree on a procedure for transforming data. You send
representatives to work on a pair of transformation programs. One program
transforms your data into an intermediate format, and then another program
transforms the intermediate data into Joe’s format. The intermediate format
is encrypted for safe passage across public Internet lines. (The encryption
process is a resource hog, but it’s a necessary component to ensure the
data’s safety.)

Your transformation program is written in Java for a Unix machine, and Joe’s
program is written in C++ for a Windows machine. That’s okay, because each
program runs in its own environment.

Everything is rosy until Joe sends you a memo. The memo reads as follows:

To: You, CEO
Your High-Rolling Company
From: Joe
Your Not-So-Esteemed Partner
My assets are sinking,
Of mergers I'm thinking.
A marriage! Yes that would be nice.
With champagne a flowing,
And bridesmaids all glowing,
And shareholders throwing the rice.
Sincerely,
Poor, Undernourished Joe
Suddenly, the bits hit the fan. You’ll have one company, with one information
technology department, and one set of computers. The combined company
will run your Unix-based computers. But what about all that data? Remember
the costly intermediate format used to transfer encrypted information across
the Internet? All the data will be transferred internally. You can save a bundle

by eliminating that transfer step. (Two can live cheaper than one. That’s what
mergers are for.)

But the two programs to blend the companies’ XML formats aren’t compatible.
Your code is written in Java; Joe’s code is written in C++. Melding the two
programs to eliminate the bottleneck in the middle will be a living, breathing
nightmare. Try compiling the Windows C++ code on your Unix machine. What
do you get? You get one warning after another. Try running the C++ code on
your Unix machine. What do you get?

Bus error (core dumped)

14

Part I: Getting Started

What an unpleasant situation! What was once beneficial data compatibility
has turned into a long-term maintenance headache. And why did things turn
out so badly? Because Joe’s C++ code isn’t portable, that’s why. Joe’s data is
portable, but his code isn’t.

Consider the facts

In case you’re not convinced that both XML and Java enjoy cross-platform
portability, look over these facts about the two technologies:

v In its brief lifetime, XML has become the worldwide standard for
representing structured, self-describing data.

The XML registry, housed at www.xm1.org, lists over one hundred XML
data formats. They include formats for financial data, healthcare, arts
and entertainment, human resources, multimedia, and many other
domains. The XML standard encapsulates almost any kind of data in

a way that’s flexible, extensible, and easy to maintain.

v Java runs as bytecode on a virtual machine.

A “compiled” Java class file that runs on Windows will run the same
way on Linux, on Windows, or on whatever platform supports the Java
Virtual Machine.

With Java, there’s no such thing as platform-specific code. When you

go from a . java source file to a . class bytecode file, you don’t lose
portability. To run the . class file, all you need is an operating system
that can support a Java Virtual Machine. And versions of the Java Virtual
Machine are available for at least twenty different operating systems.

v~ Java is based on object-oriented programming technology.

Java code is reusable. You can call methods from existing classes,
extend classes, or stretch and bend classes to meet your specialized
needs. If someone writes a wonderful XML-handling package in Java, and
the package has bits and pieces that you can use in your own work, you
can import the package and extend the classes to solve exactly the prob-
lems that you need to solve.

This cooperative model works both ways. When you create a package for
your own anticipated needs, other developers can adopt your package,
enhance your package, and spread the good word about your code.

Taken together, these factors eventually ensure that software written in one
environment can run in all other environments. Instead of reinventing the
wheel, programmers reuse the wheel. This ideal — the seamless integration
of parts from many sources to build large, reliable software systems — has

Chapter 1: Java and XML: Joining Forces in Search of the Holy Grail

been the Holy Grail of computing for the past several decades. Now portable
code and portable data put the ideal within reach.

The partnership between Java and XML

Java and XML work well together. Taken together, Java and XML form the
virtual equivalent of a well-oiled machine. Why do I say this?

Well, for starters, much of the code created for processing XML is written in
Java. 1 have no hard statistics to prove this, but I visited the utilities page at
www.xmlsoftware.com. On that page, I found references to 79 utilities, of
which 10 were written in C++, 7 were written in Python, 6 were written in Perl,
and 9 were written in other non-Java languages. A whopping 47 utilities were
written in Java. Clearly the XML developer community has an investment in
Java — for many good reasons, of which the likely best one is that both Java
and XML are streamlined for the Internet.

Since its humble beginnings in the 1990s, Java has been an Internet-ready
language. When it first hit the scene, Java was viewed primarily as a tool
for building applets and other Web-client applications. Java’s core AP/
(Application Programming Interface) included a package named java.net.
This package contained support for URLs, sockets, authentication, and
other necessities of network coding.

As time went on, people saw more and more uses for server-side Java.

v The first big push came in 1997, when Sun released the Java Servlet APL.
With a servlet, you respond dynamically to a request for your Web site’s
services. (For instance, you can build a customized Web page on the fly
to accommodate a particular visitor’s needs.)

v In 1998, Sun Microsystems started developing the JavaServer Pages
specifications. With JavaServer Pages, you create a Web page that
includes both HTML tags and Java program logic.

v In 1999, Sun announced support for JavaServer Pages as part of the
ever-popular Apache Web server.

XML was developed (in part) to address the weaknesses of HTML, the
lingua franca of the Internet. The whole push for XML has been based on
the desirability of sharing of data. Company A’s software examines the data
made public by Company B. Company A’s software can read Company B’s
data because the data is stored in an XML document. The infrastructure for
the exchange of data becomes the entire Internet.

Starting with version 1.4, Java’s core APl includes packages devoted exclusively
to the processing of XML documents. These packages help solidify the bond
between Java and XML.

15

10

Part I: Getting Started

Java Tools for XML Processing

In this section, you get a ten-cent tour. The tour includes descriptions of
several useful Java APIs. Each APl is freely available for download and
use. (Most of them can be downloaded from java.sun.com/xml.)

1 JAXP: the Java API for XML Processing

The name JAXP is a catchall term for several of Java’s XML tools that
form the backbone of the Java XML strategy. JAXP is the most mature of
all the toolsets described in this book.

JAXP
XSLT.

is actually a collection of APIs — in particular, SAX, DOM, and

SAX: The Simple API for XML

SAX represents a general-purpose approach to the handling of XML
documents. Using SAX, you can do almost anything with an existing
XML document, because the SAX approach to XML is very low-level.
(This API has a nickname. It’'s QDAX — the Quick-and-Dirty API for
XML.)

SAX views an XML document as a sequence of tags. You assign an
action to each kind of tag, and perform the appropriate action for
each tag in a document. This tag-hunting approach makes SAX a
real speed demon. If you have lots of work to do, you can count
on SAX to do the work in record time.

You'll find material on SAX in Chapters 3 through 6.
DOM: The Document Object Model

Like SAX, the DOM API is an all-purpose tool. You can perform
almost any XML task with DOM, because DOM isn’t targeted
toward specific XML applications.

DOM doesn’t view a document as a collection of tags. Instead,
DOM works with XML elements. To do this, a DOM program makes
a big copy of a document, and stores the copy in the computer’s
memory. So DOM isn’t fast. If you run DOM on a large XML document,
then the run takes a long time. That’s the price you pay for dealing
with elements instead of tags.

In this book, Chapters 7 through 9 cover the DOM APL
XSLT: Extensible Stylesheet Language Transformations

With XSLT, you can turn any XML document into almost any other
form. You don’t have to get lost in procedural (do-this-and-then-
do-that) code. Instead, you create templates. If part of a document
matches a template, then the computer uses that part of the
document to compose its output.

In this book, I cover XSLT in Chapters 12 and 13.

Chapter 1: Java and XML: Joining Forces in Search of the Holy Grail ’ 7

You can get JAXP on your computer in one of two ways:

v You can visit java.sun.com/xml/jaxp and download the JAXP API on
its own.

+»* You can get JAXP as part of the Java 2 Platform Standard Edition, version
1.4 or later. The last time I looked, this was a 40MB download — but it’s
worth every byte. The link to the download is at java.sun.com/j2se.

SAX, DOM, and XSLT are all included in Sun’s JAXP pack. The next two items
are not:

v JDOM: The Java Document Object Model

Neither SAX nor DOM is specific to Java. You can write DOM programs
in C++, in Perl, and in a number of other programming languages. When
you write DOM programs in Java, the core Java API gets rusty from
disuse. DOM is all things to all languages, so DOM can be awkward and
cumbersome to use.

To remedy this and other DOM shortcomings, two guys named Jason
Hunter and Brett McLaughlin created JDOM. In many respects, JDOM is
a reworking of the ideas behind DOM. The big difference is, JDOM takes
full advantage of the power of Java, and uses a sleek intuitive tree structure
that’s missing from DOM.

Yes, JDOM is streamlined for Java. But no, JDOM isn’t part of Sun’s Java
toolset. Instead, you download JDOM by visiting www. jdom.org. (To
learn about JDOM, visit Chapters 10 and 11 in this book.)

v JAXB: The Java API for XML Binding

The first time [saw some JAXB code, I was jealous. Why didn’t I think
of that? With JAXB, you take an XML document, and turn it into a Java
class. If the document has a Sale element, then your Java code can
have a Sale class. If the Sale element has a quantity attribute, then
the Sale class has methods getQuantity and setQuantity. What
could be simpler?

JAXB is part of Sun’s XML suite, but it’s not currently bundled with JAXP
or with the Java 2 core API. So, to get JAXB, you have to do a separate
download. The home page for JAXB is java.sun.com/xml/jaxb. For
your reading pleasure, [cover JAXB in Chapters 14 and 15.

I have three more APIs to tell you about. But first, | have to introduce you to
the star of the show — Web services.

Web Services (Hot Stuff)

The Internet era is marked by several stiff competitions, all going on at
roughly the same time. One competition was called the “Browser War.” It was

18

Part I: Getting Started

|
Figure 1-1:
The life
cycle of

a Web
service.
|

Netscape versus Microsoft, and everyone knows who won. Later came the
brawl between Microsoft and the U.S. Department of Justice. This brawl
raised the possibility that Microsoft holds an unfair monopoly in the
software market. (Well, that issue seems to have been settled.) These days,
another competition is vying for center stage — the scramble for pieces of
the Web-services-software pie — potentially a big, big deal.

So what'’s the fuss all about? What are Web services, and why do they concern
XML hounds like you and me? Well, the answer is illustrated in Figure 1-1.

Their-Firm.com

UDDI Registry

o/ \

Query/ . @
response Publlsh\mg
My-Firm.biz i Your-Firm.biz
|
} SOAP
|
My 1 1
® : ®
! Your Web | Using the service . | Your Web
| service | WSDL } service
l l
application l l

Of course, I have a story to go with Figure 1-1.

Your company creates software

You write a useful piece of software. (See the bubble numbered 1 in Figure 1-1.)
Your software is so useful that you decide to offer it to others. (You offer it
for a fee.)

You want to tell the world about the availability of your software. How can
you do that? Well, you can take an ad out in the local newspaper, create a
commercial for night-owl TV, or wear a sandwich board around town. But
it’s better to put information about your company and its software on the
Internet. A place to deposit such information is called a registry.

Chapter 1: Java and XML: Joining Forces in Search of the Holy Grail ’ 9

How do you get information about your company into a registry? Once again,
there are clunky alternatives. You can write a nice letter to the registry man-
ager, or spend hours online filling out cumbersome Web-based forms. But the
best procedure is one that’s completely automated. You need a standardized
protocol for describing things about your company. You use the protocol to
describe your company and its software. Then you automate the sending of
the description to the registry. (This sending of information is called publishing
to the registry. If you're following along in Figure 1-1, we’re up to the bubble
numbered 2.)

Well, there just so happens to be a standard protocol for describing companies
and their services. That protocol is named UDDI (Universal Description,
Discovery, and Integration). So now, this thing that we’ve been calling a “reg-
istry” has a more specific name. It’s called a UDDI registry. In case you haven’t
guessed, UDDI is based on XML.

In fact, at this point in the story, XML is useful on two different layers. On

an upper layer, you describe your company and its services with XML-based
UDDI. On a lower layer, you need a standard for transporting this UDDI docu-
ment to a registry on a remote computer. That standard has to work with
Windows, Unix, Java, C#, Fred’s Private Programming Language, or anything
else that’s at the other end of the Internet pipe.

Well, you're in luck. There’s a standard for sending information, and it’s called
SOAP — the Simple Object Access Protocol. Of course, SOAP is based on XML.
The idea behind SOAP is to wrap a message in an XML envelope. Then you
send this envelope across the Internet, and have the receiver unwrap the
message. With the SOAP standard, a Java program on a Windows computer
can send stuff to a Perl program on a Linux box. The underlying platform is
irrelevant.

My company gets wind of your software

You've published information on a UDDI registry. Now you wait while others
visit the registry. In the meantime, my firm develops a very specialized need.
I've developed software that has a big, fat gap in the middle of it. I suspect
that some pluggable components can fill that gap. (For instance, | may have
a Web site that’s crying out for a currency converter. | know there must be
currency converters that [can use.)

To help me fill the gap, | send an automated query to the UDDI registry. This
query can be automated because the query/response mechanisms are part of
the UDDI specification. Anyway, I send a query to the UDDI registry and what
do I get as part of the response? I get information about your software. (See
step 3 in Figure 1-1.)

In an ideal world, I would skip immediately to the next automated step. But in
the real world, I probably hold six or seven boring meetings. My associates

20

Part I: Getting Started

compare alternatives, schmooze with people over lunch, and spend money
on expensive consultants. When all is said and done, we decide to plug your
software into my system. This is step 4 in Figure 1-1.

By now, it’s safe to stop calling your stuff “software,” and start calling your
stuff a Web service. After all, you’re making your stuff available through
Web-based protocols, and my firm will avail itself of your firm’s service.

So to make your service work with my software, we use XML tools. One of
the tools is called WSDL (the Web Services Description Language). WSDL is an
XML standard for describing the way in which your software can get called
into action by my software. (Like UDDI, a WSDL description draws a picture
of the service that you're offering. But unlike UDDI, the WSDL description
goes into detail about under-the-hood software interfaces.)

On the registry, you've posted a WSDL document describing the technical
details of your Web service. My software can download the WSDL document,
and decide on its own how to mesh with your software. Because my software
configures itself, fewer people need spend hours reinventing wheels.

1 use your software

The day for deployment has finally arrived. To use your service on my Web
site, I have to call your class’s methods. I call methods that run on your
computer, and the end result is no different from calling methods on my
own computer. This is bubble 4 in Figure 1-1. It’s where your Web service
plugs seamlessly into my company’s application.

As usual, the process needs rules and regulations. Exactly how do these
method calls work? The answer brings us back to SOAP. With SOAP, we
transport UDDI documents, WSDL documents, method calls, and many
other things. So, you see, it all comes down to SOAP. And SOAP is an
incarnation of XML.

That’s the Web services story in 1000 words or less. That’s what all the fuss
is about.

More Java Tools

Earlier in this chapter, I described some Java APIs for use with XML. Now,
with a basic understanding of Web services, you're ready to read about three
additional APlIs.

Chapter 1: Java and XML: Joining Forces in Search of the Holy Grail

1 JAXM: The Java API for XML Messaging

A SOAP message is an ordinary XML document with some special
demands on the kinds of elements that it contains. For instance, a SOAP
message has envelope and body elements. So some people working
with SOAP messages asked themselves an important question. “Why
don’t we create an API that has classes and methods just for envelope
and body elements?” As a result, they created JAXM, with classes and
methods that target all the special features of a SOAP document.

Sun’s Web page for JAXM is java.sun.com/xml/jaxm.Icover the JAXM
API in Chapter 16 of this book.

v JAXR: The Java API for XML Registries

Let’s face it. Everything in this world is becoming highly specialized. We
have pills to make us happy, pills to make us happy without making us
drowsy, and pills to make us happily drowsy (without making us
drowsily happy).

Well, the Java tools for XML are also becoming specialized. Take, for
instance, the API for XML Registries. With this API, you do some of the
things shown in Figure 1-1. You publish services on registries, and you
query the registries. In essence, you send SOAP messages, but your
program doesn’t have to concern itself with envelopes and bodies. In
fact, you can write JAXR programs without knowing squat about SOAP
elements. With JAXR, you call methods named findOrganizations
and createService. The JAXR APl composes SOAP messages behind
the scenes.

You can read the official story about JAXR by visiting java.sun.com/
xml/jaxr. You can read the unofficial story by visiting Chapter 17 in
this book.

v JAX-RPC: The Java API for XML-based Remote Procedure Calls

To bring a published Web service into my own software environment,

[call procedures that live somewhere else on the Internet. And these
days, the gold standard for reaching another place on the Internet is to
communicate using SOAP. If | need prices, weather information, or song
titles, then I use SOAP to reach out and call your getPrice, getRainfall,
or getSongTitle methods.

[can compose SOAP messages from scratch, but it’s better to use an API
that can call remote methods on my behalf. That API is called JAX-RPC,
and it’s described in Chapter 18. (The home page for this APl is java.
sun.com/xml/jaxrpc.)

I've made a decision: When I finish this book, I'm going to retire my com-
puter’s “J” and “X” keys. I'll work with pencil and paper to create something

2 2 Part I: Getting Started

the world really needs — a triply-nested acronym. I'm thinking about
integrating SAX and DOM. It’ll be called “DSDA,” which stands for
“Dummies SAX and DOM API,” which stands for “Dummies Simple API for
XML and Document Object Model API,” which stands for “Dummies Simple
Application Programming Interface for Extensible Markup Language and
Document Object Model Application Programming Interface.” People will
call it the “DSDA API” (right before they start gibbering helplessly) — but
I'll remind them that the “A” in “DSDA” already stands for “API,” and that’ll
probably put ‘em over the edge. After all, nature abhors redundancy.

